Total skin electron therapy (TSET): Monte Carlo Simulation and implementation

نویسندگان

  • Farshad Ghasemi Physics and Accelerators School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 14155-1339, Tehran – Iran
  • Ferydoon Abbasi Davani Radiation Application Department, Nuclear Engineering Faculty, Shahid Beheshti University, P.O. Box: 1983963113, Tehran- Iran
  • Hamid Emami Department of Radiotherapy and Oncology, School of Medicine, Isfahan University of Medical Sciences, P.O. Box: 8184917911, Isfahan, Iran
  • Mitra Ansari Physics and Accelerators School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 14155-1339, Tehran – Iran
  • Mohhamad Lamehi Rashti Physics and Accelerators School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 14155-1339, Tehran – Iran
  • Shahram Monadi Department of Radiotherapy, Seyedoshohada Hospital, P.O. Box: 8184917911, Isfahan, Iran
چکیده مقاله:

Introduction: Total skin electron irradiation technique is used in treatment of the mycosis fungoid. The implementation of this technique requires non-standard measurements and complex dosimetry methods. Operating procedures for total skin electron irradiation and its dosimetry vary in different radiation therapy centers in the world. In this article, validation of TSET technique dosimetry data by Monte Carlo simulation is done. Materials and Methods: The electron beam characteristic of RTSEI for the only electron accelerator, located at the radiation center of the Seyed Alshohada Hospital of Isfahan (NEPTUN 10PC) determined by performing Monte Carlo simulations and using EGSnrc-based codes (BEAMnrc and DOSXYZnrc). For the best uniformity of the vertical profile, the optimal angle of gantry was defined at SSD=300 cm. The effect of the degrader plane that is located at a distance of 20 cm from the patient surface, was evaluated on the amount of energy reduction of the beam, the opening of the electron beam field and the homogeneity of the dose distribution. The transversal dose distribution from the whole treatment with Rotational technique was simulated in a CT- based anthropomorphic phantom. Also, the percentage depth dose in the head, neck, thorax, abdomen and legs was obtained for RTSET technique. TSET dosimetry requires measurements in nonreference conditions. Because of the complexity of the required measurements for the commissioning process of this technique, different dosimetric systems were employed such as radiochromic films (EBT3) and an ionization chamber. In particular, for dual-field beams irradiation, the optimal tilt angle was investigated and the dose distribution in the treatment plane was measured by radiochromic films. Dose distributions and percentage depth dose measurements for a total skin electron therapy were measured in an anthropomorphic phantom. Results: The optimal angle of 20o would give the most uniform total profile and the use of a 0.8 cm PMMA degrader in front of the patient leads to a homogeneous distribution of the dose in all directions (the mean relative dose value was 97%±5%, normalizing to 100% at the calibration point level). The percentage depth dose curves in different organs of anthropomorphic phantom for RTSEI indicates that the depth of maximum dose is on the surface of the phantom, Isodose curve of 80% is formed at a depth less than 4 mm and at the depth less than 1.5 mm, the dose decreases to 20% of the maximum dose. Conclusion: The main purpose of this study was to commission and optimize a TSET technique for the treatment of mycosis fungiodes with the NEPTUN 10PC linear accelerator. This was done through an extensive set of measurements and a large number of MC simulations. The results of Monte Carlo calculations were found to be in general agreement with the measurements, providing a promising tool for further studies of dose distribution calculations in TSEI.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Master of Science Thesis Monte Carlo simulation with Geant4 for verification of rotational total skin electron therapy (TSET)

.................................................................................................................................................. v Populärvetenskaplig sammanfattning................................................................................................ vii

متن کامل

Monte Carlo Simulation of Electron Beams produced by LIAC Intraoperative Radiation Therapy Accelerator

Background: One of the main problems of dedicated IORT accelerators is to determine dosimetric characteristics of the electron beams. Monte Carlo simulation of IORT accelerator head and produced beam will be useful to improve the accuracy of beam dosimetry.Materials and Methods: Liac accelerator head was modeled using the BEAMnrcMonte Carlo simulation system. Phase-space files were generated at...

متن کامل

Validation of total skin electron irradiation (TSEI) technique dosimetry data by Monte Carlo simulation

Total skin electron irradiation (TSEI) is a complex technique which requires many nonstandard measurements and dosimetric procedures. The purpose of this work was to validate measured dosimetry data by Monte Carlo (MC) simulations using EGSnrc-based codes (BEAMnrc and DOSXYZnrc). Our MC simulations consisted of two major steps. In the first step, the incident electron beam parameters (energy sp...

متن کامل

Room scatter effects in Total Skin Electron Irradiation: Monte Carlo simulation study

PURPOSE Total Skin Electron Irradiation (TSEI) is a complex technique which usually involves the use of large electron fields and the dual-field approach. In this situation, many electrons scattered from the treatment room floor are produced. However, no investigations of the effect of scattered electrons in TSEI treatments have been reported. The purpose of this work was to study the contribut...

متن کامل

Monte Carlo Simulation of a Linear Accelerator and Electron Beam Parameters Used in Radiotherapy

Introduction: In recent decades, several Monte Carlo codes have been introduced for research and medical applications. These methods provide both accurate and detailed calculation of particle transport from linear accelerators. The main drawback of Monte Carlo techniques is the extremely long computing time that is required in order to obtain a dose distribution with good statistical accuracy. ...

متن کامل

A Monte Carlo simulation study on the effectiveness of electron filters designed for telecobalt radiation therapy treatment

Background: The aim of present study was to analyze the effectiveness of electron filters in the Telecobalt radiotherapy treatment by simulation technique.  Materials and Methods: The BEAMnrc Monte Carlo code was used to simulate the electron filters of thickness of 0.5 gm/cm2 below the trimmer bar for 35 × 35 cm2 field size in Theratron Equinox-80 telecobalt unit. The electron filters were mad...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 15  شماره Special Issue-12th. Iranian Congress of Medical Physics

صفحات  158- 158

تاریخ انتشار 2018-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023